ANCIENT ROOF STRUCTURES: CAPACITY OF BATTENS AND REPAIR USING WOOD-BASED PANELS

Andreas Meisel¹, Thomas Moosbrugger², Gerhard Schickhofer³

ABSTRACT: The erection of ancient roof structures was based on the experience, tradition and the courage of their constructors instead of a structural analysis. A realistic model requires the consideration of the spatial load-bearing behaviour, as well as the flexibilities and the eccentricities of carpentry joints. However, the utilization ratios of roof structures yield high values, so no meaningful statement about the load-bearing capacity of these structures is possible. By using the "Grazer Dachstuhl" as an example, changes of the utilization ratios as a consequence resulting from the consideration of the capacity of the roof battens are pointed out. In the beginning, some theoretical background on the load-bearing capacity of roof battens is presented. This is followed by a report of some structural tests and the documentation of a model calculation. Based on the findings of the analysis of ancient roof structures, a protecting repair-concept using wood-based panels will be developed. This integral structure comprises the improvement of the rafter roof, a strengthening of the rafters themselves and their bases and an in-plane-bracing of the roof. Additionally, this concept is characterised by economical, constructural and building-physical advantages.

KEY WORDS: ancient roof structure, Grazer Dachstuhl, modelling, load-bearing capacity, capacity of the roof battens, repair, repair-concept, wood-based panel, CLT, integral structure

1 INTRODUCTION

In the context of a structural analysis, the mechanical behaviour of an existing structure is represented by a simplified structural model. In some cases these computations result in extremely high utilization ratios (see [2], [3]), so that no meaningful statement about the load-bearing capacity of these structures is possible. The fact that, although calculated utilization ratios are high, joints, beams or structural elements did not fail, can be justified as follows:

- The local material strengths are higher.
- The calculated loads did not occur during the existence of the building.
- The safety level does not meet the current requirements of the standards.
- The analytic model and the design concept is unable to represent the real structural behaviour.

As illustrated in [3], the beams and joints in the influence area of the dormer and the hip area yield very high utilization ratios in the „Grazer Dachstuhl“ of the real estate Mandellstraße 9 (see Fig. 1). The calculated capacity of rafter #12’ is exceeded by the factor of 5 in the area of its cantilever which supports the valley rafters of the dormer. This paper deals with changes of the utilization ratios of rafter #12’, due to taking into account the load-bearing capacity of the roofing lath.

Numerous surveys of ancient roof structures showed, that the load-bearing capacity of roof battens significantly influences the global load distribution. For instance, the global bracing disregarding the roof battens is often inadequate to non-existent (see [3], [5]).

1,2,3 Graz University of Technology, Faculty of Civil Engineering, Institute of Timber Engineering and Wood Technology, Inffeldgasse 24, 8010 Graz, Austria, Email: andreas.meisel@tugraz.at, thomas.moosbrugger@tugraz.at, gerhard.schickhofer@lignum.tugraz.at

Figure 1: Spatial illustration of the dormer and the entire structure (see [3]).
2 TYPES OF LOAD-BEARING BEHAVIOUR

The load-bearing behaviour can be divided in load-bearing behaviour due to loading in the X_L–Y_L–plane and due to loading perpendicular to the X_L–Y_L–plane.

2.1 LOAD-BEARING BEHAVIOUR DUE TO LOADING IN THE X_L–Y_L–PLANE

2.1.1 Longitudinal bearing behaviour (X_L)

Valley and hip rafters, together with the jack rafters and roof battens form many triangles in the roof surface area. As a result of deformations in the roof surface area axial forces are evoked in these triangles, that depend on the axial stiffness of the battens, the stiffness of the nail joints between battens and rafters and the roof lathing rids.

Furthermore, the roof battens support oppositely placed hip rafters in hip areas for instance. The longitudinal capacity of the rafters is also important for the spatial bracing of the rafters perpendicular to the frame plane.

2.1.2 Shear bearing behaviour

Distortions of the roof surfaces result from deformations perpendicular to the frame plane. These distortions cause changing angles between rafters and roof battens, whereby small equivalent torsion spring stiffnesses in the nodes can arise (flexible vierendeel girder system). Furthermore, the spatial stability of numerous ancient rafter and collar beam roofs is only possible due to the shear bearing capacity and the longitudinal bearing capacity of the roofing lath (see for example [3], [5]).

In the case of relative deformations of adjacent rafters in the roof surface, the bending stiffness of numerous, flexibly joined roof battens is raised (system effect in the roof surface).

2.2 LOAD-BEARING BEHAVIOUR DUE TO LOADING PERPENDICULAR TO THE X_L–Y_L–PLANE

In case of differential deformations of adjacent rafters, load restributions due to bending can be enabled by the roof battens (system effect).

3 DETERMINATION OF THE SHEAR STIFFNESS IN THE ROOF SURFACE AREA BY TESTS

Currently the calculation of the shear stiffness in the roof surface area seems to be nearly impossible, therefore several tests were performed. As 39 nodes were simultaneously tested in this case, at least fundamental findings may be gained.

Friction forces between the roof tiles appears to be statically not useable, because the magnitude of these forces depends on further effects such as roughness as well as geometric influences. Therefore no roof tiles have been applied in the tests.

3.1 TEST CONFIGURATIONS

A rafter-roof batten-field, consisting of 13 battens on three rafters was assembled on the floor (see Fig. 3). The shear distortion of this shear field was applied by a hydraulic jack. The maximum displacement u of the field was set to 100 mm. The lateral forces were uniformly transferred into the rafters by a roller-supported load transfer beam. Two Teflon disks were placed in between the rafters and the load transfer beam or the anchor beam in order to reduce the frictional resistance in the rotation center.

A total of four test configurations was tested:

1) Two wire nails (3.1/80) for each roof batten-rafter-joint at a distance of 8 cm
2) One forged nail (dimension comparable with the wire nail) for each roof batten-rafter-joint
3) One wire nail (3.1/80) for each roof batten-rafter-joint
4) No connection between battens and rafters in order to investigate unintentional frictional resistances in the steel pin joints.

![Figure 3: Sketch of the test configuration in top view.](image-url)
3.2 TEST RESULTS

Fig 4 illustrates the results of the four tests. In each case multiple hystereses were passed through, in order to simulate varying stresses and stress directions and their effects. It can be assumed that in ancient roof structures at least the first hysteresis was passed through completely. Therefore, the diagram always illustrates the second hysteresis. All other hystereses differ only insignificantly from these.

For configuration 1 (two wire nails at a distances of 8 cm) the approximation by a linear-elastic moment-rotation-trend seems to be suitable for the engineering practice. The results of both configurations with only one nail show a significantly different behaviour. Starting from a rotation ϕ of about 0.5°, no considerably higher forces can be transferred (plastic behaviour). The transfer of the moments is mainly carried out by sliding friction. The maximum moments are in the range of 10 % compared to configuration 1.

The maximum achieved moments for the joint with one wire nail are about 15 % lower than for a forged nail. Two reasons for this may be the lower pull-out resistance (and therefore contact pressure) and the lower shaft friction of the wire nails.

The test without connectors between roof battens and rafters (configuration 4) demonstrates that the undesired frictional resistances in steel pin joints have only insignificant effects on the test results with nails.

3.3 CALCULATED VALUE OF THE EQUIVALENT TORSION SPRING STIFFNESS

Due to the following facts, it is problematic to define a calculated value of the equivalent torsion spring stiffness:

- Only few test results are available.
- High variations are expected.
- High shear distortions of the roof surfaces up to 3° were found in ancient roof structures (see example in "Introduction").
- Besides plain shear behaviour, an additional bending behaviour of the roof battens could be observed in the test. This fact leads to a falsification of the calculated torsional moments.

Because of these facts, the calculated value of equivalent torsion spring stiffness is defined as a secant modulus for joints with two nails at a distances of 8 cm and a maximum displacement of 3° as follows:

$$ C_{s,\text{sec}} = C_{s,u} = C_s = \frac{M_{T,\text{max}}}{\varphi} = \frac{120}{0.0524} \approx 2300 \text{ Nm/rad} $$

The test configurations were modelled to gain test results independent from the bending stiffness of the battens. It was found that the bending stiffness of battens is only important in tests with two nails per joint. Therefore the calculated value of the equivalent torsion spring stiffness is approximately 2500 Nm/rad (see Fig. 4).

The design value of the equivalent torsion spring stiffness for joints with only one nail is defined with approximately 10 % of the stiffness for joints with two nails (250 Nm/rad). Due to the small differences between forged and wire nails, the same value is used for both. The calculation values for one or two nails provide conservative results for rotations less than 3° (corresponding to a displacement/inclination of L/19).

4 SPATIAL MODEL OF A ROOF STRUCTURE WITH DORMER

In the spatial structural model (including the consideration of the flexibilities and eccentricities of joints) of the "Grazer Dachstuhl" of Mandellstraße 9 all roof battens in the area of the dormer and the adjacent ridge roof surface are implemented as mentioned in the introduction (see Fig. 1). The flexibilities of nail joints in direction of the roof battens andrafters are taken into account according to Fig. 5. The shear stiffness of batten-rafter-joints is considered as mentioned above. The slip modulus K_{ser} of a wire nail is included in accordance with EN 1995-1-1 [4].

Figure 4: Moment-rotation-diagram for all test configurations and illustration of the calculation values of the equivalent torsion spring stiffness.

Figure 5: Modelling of the roof batten-rafter-joint connection.
4.1 RESULTS OF THE IMPLEMENTATION

The effects of the consideration of the roof battens on internal forces and utilization ratios of rafter #12’ are investigated exemplarily (see Fig. 1). By approximation all roof battens in the area of the dormer and the adjacent ridge roof surface are implemented into the spatial structural model M1 (details see [3]). The input- and computational effort increases considerably. In this first approximation are neglected the rides of the roof battens.

As demonstrated in Tab. 2, utilization ratios decrease significantly in models considering the capacity of the roof battens. The determination of the buckling length (for buckling out of the roof surface) is not specified for the rafter, that is elastically supported by the battens (* see Tab. 2). This results in conservative axial design forces. Taking into account the shear stiffness in the roof surface for one nail shows hardly influences the results of the present example (Tab. 2).

Table 2: Design values of the internal forces and controlling net section design (according to EN 1995-1-1 [5]) for rafter #12’ (Cross section: 15/15 cm with tenon hole 5/5 cm, C24, k_mod = 0.90).

<table>
<thead>
<tr>
<th>Model</th>
<th>M1 ([3] page 336), without roofing lath, C_s</th>
<th>with roofing lath, C_s for 1 nail</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{y,\text{max}} [kNm]</td>
<td>-29.39</td>
<td>-19.48</td>
</tr>
<tr>
<td>M_{z,\text{max}} [kNm]</td>
<td>0.57</td>
<td>2.54</td>
</tr>
<tr>
<td>N_{\text{max}} [kN]</td>
<td>-53.85</td>
<td>-37.74</td>
</tr>
<tr>
<td>Buckling length</td>
<td>L_{k,y} [m]</td>
<td>6.10</td>
</tr>
<tr>
<td></td>
<td>L_{k,z} [m]</td>
<td>3.10</td>
</tr>
<tr>
<td>Utilization ratios</td>
<td>Bending</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td>Stability</td>
<td>5.35</td>
</tr>
<tr>
<td></td>
<td>[-]</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Furthermore by taking into account the roof battens deformations are decreased. Under quasi-permanent loading, the cantilever of rafter #12’ deforms 140 mm in model M1 without battens (see Fig. 1). In the model with battens, under the same loading deformation is calculated to only 95 mm and to 94 mm without and with equivalent torsion spring stiffness respectively. This represents a decrease of 33 %. These results coincide very well with the measurements in situ (approximately 90 mm).

Due to the participation of roof battens in the global load transfer, their design stresses exceed the design values of strength. The computed stresses are in a range, where the capacity can be explained by a reduction of the level of safety.

5 REPAIR OF ANCIENT ROOF STRUCTURES WITH WOOD-BASED PANELS

5.1 BASIC CONCEPT

Figure 6: Basic concept of the repair with wood-based panels.

5.2 EXISTING STRUCTURE

At first a systematic survey, damage analysis and state-of-construction analysis is performed for an existing roof (see [3]). At the beginning of the repair, the attic is cleared from all built-ins, claddings, etc. Then the timber is cleaned and the roof tiles and roof battens are removed.

5.3 REPAIR

Subsequently, three layered panels or cross laminated timber panels (or other wood-based panels depending on their suitability) are applied and fixed. Their strong direction runs parallel to the rafters. Both legs of the formed triangle are connected with tension members (from existing tie-beams or new steel ties) in the level of the top floor to a rafter roof. Depending on structural requirements and the condition of the old structure it can be used to variable degrees for the load transfer. The simplest option is to use the existing structure as a collar beam to support the new structure. Furthermore, a flexible compound consisting of the old rafters and the wood-based panels can be manufactured for example by means of self-tapping screws. Simultaneously, the wood-based panels are used as a bracing of the structure and as a load distributor for the rafters. Thus an integral structure is at hand, many different tasks will be performed by the element “wood-based panel”.
As explained in [3], the rafter bases are the most common weak points in ancient roof structures. These areas will be strengthened simultaneously due to the wood-based panels. The often poor longitudinal bracing is also improved by wood-based panels (racking resistance). Therefore, no work- and cost-intensive strengthenings of individual beams and joints are needed.

5.4 IMPROVEMENTS CONCERNING BUILDING PHYSICS

In case of a planned conversion of the attic into a loft, improvements concerning building physics are required in addition to structural repair. Therefore, all panel joints must be airtight with a vapour barrier and an insulation layer has to be installed. Then a diffusion open windproofing is laid and the counter-battens are fixed. Finally the roof battens and the roof tiles as well as the connections to eaves, cornice and chimneys will be reinstalled.

6 APPLICATION AREAS

The repair of ancient roof structures using wood-based panels on rafters is suitable for both, valuable (“monuments”) as well as ordinary roof structures. The concept is ideal for slightly deformed, steep roofs on geometrically simple ground plans and few fixtures such as chimneys, etc. The majority of roofs erected in the period of promoterism meet these requirements. Unique interiors can be developed with the illustrated repair concept. Their character is primarily determined by the numerous ancient timber elements. Small rooms, such as bathrooms, should be placed as an independent “box” in the loft, in order to avoid complex connections to the existing structure.

7 ADVANTAGES

7.1 GENERAL

• Short construction time, already under construction soon raintight
• Little or no time-consuming reinforcements of single joints or beams
• Favorable fire behaviour (depending on the wood-based panel)
• The structure remains largely intact and visible.
• Robust and controlable construction (possibilities for load redistributions)
• The wood-based panel forms an underlay – this balances the temperature as well as the effects of moisture

7.2 ADDITIONAL ADVANTAGES IN THE CASE OF A CONVERSION

• Unique appearance of the interior
• No complicated adjustment of the interior cladding needed
• relatively high thermal mass - high wood mass
• Insulation above the rafters guarantees economical and building-physical advantages and maximizes the interior cubature
• Simple and little error-prone construction of the roof because of relatively few layers

8 DISADVANTAGES

• Only suitable for simple geometries and slightly deformed roofs
• Roof covering needs to be removed in advance
• Heavy cranes are required because of the size and weight of the wood-based panels
• Slight rise of the roof surface
• Probably cost-intensive tailor-made solutions to preserve cornice and eaves edges
• Installation problems if the planned and actual geometry differ essentially

9 PROBLEMS

9.1 DEFORMATIONS OF THE ANCIENT ROOF STRUCTURE

If individual rafters are deformed so strongly, that the form closure with the wood-based panel can not be established, then the mentioned rafters can be replaced, planned or underlaid with wedges (for this see Fig. 7). Furthermore, panels can also be fitted to a certain extent with the raftes by means of bolts and screws including washers. In this case, the inherent stress condition has to be investigated by calculation (see below). A small gap of a few centimeters between the rafters and wood-based panels can also be bridged with suitable screws. But this may prove problematic in terms of fire safety, as the screws in the joint area are not protected from temperature effects.

Figure 7: Handling of a strongly deformed rafter.

9.2 ESTIMATION OF THE INHERENT STRESS CONDITIONS

Aim: With a bolt arranged in the middle of the span the wood-based panel and the displaced rafter will be connected form-closure.

Assumptions: The simplified calculation is carried out on a horizontal single-span beam. Further assumptions are illustrated in Fig. 8. The camber of the deformed (loaded only with its own weight) rafter was defined with span/100.
9.3 CONCLUSION

The calculations (see [3]) illustrate that even in the case of heavily deformed rafters the computed internal stresses (approximately 30% to 40% of the capacity) lie clearly within the limits of the standards. These bending stresses have to be superposed with the stresses resulting from the loads on the flexible compound (heritage rafters and wood-based panels). The internal stress has a positive effect on the rafters, because it unloads them. The opposite is true for the wood-based panels. However, this fact is unproblematic, because the wood-based panels offer a high section modulus in comparison to their moment of inertia.

It has to be pointed out, that timber under permanent loads shows a distinctive creep behaviour (see [1] S. 94) and therefore the internal stresses will decrease (relaxation). In this estimation only the point of time $t = 0$ was investigated. For the design of the whole structure, also the point of time $t = \infty$ has to be investigated.

9.4 CONTAMINATION OF THE TIMBER

In the case of a conversion of the attic into a loft and the fact that parts of the structure should remain visible, an attractive wood finish is required for aesthetic reasons. However, the timber is often not only contaminated by dust, cobwebs, etc., but also by paint finishings and bird droppings which are hard to remove. In such cases the timber can be brushed or blasted. The (mostly mechanical) brush is the more gentle method and therefore preferable. Depending on duration and intensity of both treatments late wood comes forward differently.

9.5 OPENINGS FOR CHIMNEYS, ILLUMINATION ETC.

If the attic should be converted into a loft, large openings for illumination and ventilation will be necessary. These holes in the wood-based panel cause a structural weakening, which may require additional structural elements. For instance downstand- or upstand beams can be arranged within the insulation area. Openings in support-near areas should be preferred, since they represent the least weakening of the structure.

10 (STANDARD-)CONSTRUCTIONS OF SELECTED DETAILS

10.1 Rafter base

Fig. 9 and Fig. 10 illustrate possible structural solutions for the basis using of real roof structures as example. Regardless of whether a collar beam roof or a purlin roof is at hand, the axial forces acting in the plane of the wood-based panels should be transferred into the supports as simple, as direct and with as little eccentricities as possible. Because of the low bending stiffness in direction of the ridge of the wood-based panels perpendicular to the roof surface, a so-called “base beam” has to be arranged to transfer the loads into the tension members. Depending on their design, the spacing of the tension members can be defined.

In collar beam roofs, the base beam is arranged in the area of the tilting fillets (see Fig. 9). If this is impossible or unreasonably because of local circumstances, the base beam is arranged inside. In this case the tensile forces have to be transferred by a series of self tapping screws into the base beam (see Fig. 10). The required anchorage length L_{ef} for the screws may influence the design of the wood-based panels.

9.4 CONTAMINATION OF THE TIMBER

In the case of a conversion of the attic into a loft and the fact that parts of the structure should remain visible, an attractive wood finish is required for aesthetic reasons. However, the timber is often not only contaminated by dust, cobwebs, etc., but also by paint finishings and bird droppings which are hard to remove. In such cases the timber can be brushed or blasted. The (mostly mechanical) brush is the more gentle method and therefore preferable. Depending on duration and intensity of both treatments late wood comes forward differently.

10.2 Ridge

Deviations from the plane roof surface area can be equalised by the bending flexibility of the wood-based panels to a certain extent. This possibility does not exist at the ridge, because the wood-based panels are virtually non-deformable in the plane of the panel (in-plane action). Ancient roofs usually do not show perfect straight ridge lines, therefore adequate solutions must be considered.

- straight ridge line
- on site matched ridge line

In the first alternative (see Fig. 11 left), a straight ridge line is formed by the geometry of the wood-based panels. From the position of the wood-based panels, differing rafters are either planed, lined or the joints of the rafters are disconnected and the rafters are bent to fit
with the panels. As long as no ridge purlin exists, this approach is possible because of the bending flexibility of the rafters (cantilever). The second alternative (see Fig. 11 right) is offered, if a straight ridge line is unwanted or impossible. At first, all wood-based panels of one roof surface area are applied with an overhang at the ridge. Afterwards this overhang is cut on site according to the actual ridge geometry and the panels of the second roof surface are applied. Also their overhang is matched to the actual geometry.

![Figure 11: Top: straight ridge line, Below: on site matched ridge line.](image)

10.3 Further detail solutions can be found in [3].

10.4 Panel thickness

In addition to the requirements of stability, structural safety and serviceability the required panel thickness depends on the following factors:

- The (remaining) load-bearing capacity of the existing structure and the type of interconnection between the existing structure and the wood-based panels.
- The force threaded length of the screws.
- Type of wood-based panel.
- Structural aspects such as the design of the panel joints.
- The requirements of fire safety and economy, etc. Based on the mentioned aspects, panel thicknesses between 40 mm and 120 mm are reasonable.

11 SUMMARY

11.1 THE PROPORTION OF THE LOAD-BEARING CAPACITY OF THE ROOFING LATH FROM THE GLOBAL TRANSFER OF ROOF STRUCTURES

Especially in valley, hip and dormer areas and for the bracing in the roof surface, the roof battens can sensitively influence the global load-bearing behaviour. The load-bearing capacity especially results from the axial stiffness of the roof battens. The valley rafters together with the jack rafters and roof battens form triangles in the roof surface area. Facing hip rafters support each other.

Shear stiffness in the roof surface area can also be relevant for the bracing of the structure. If the shear stiffness is considered in the structural model, there should be at least two nails available per joint. Including the equivalent torsion spring stiffness of a joint with only one nail does not significantly effect the global load-bearing behaviour. In the case of serious, but locally limited damages, the load-bearing capacity of the whole structure can be illustrated with the system effect of the roof battens.

11.2 REPAIR WITH WOOD-BASED PANELS

The proposed repair concept is a robust alternative to conventional individual reinforcements (mostly carpentry). It can be assumed that the repair of geometrically simple roofs with wood-based panels meets the economical requirements. The construction times are short, the level of prefabrication is relatively high and multiple typical vulnerabilities of ancient roof structures can be strengthened simultaneously in one step. On the one hand the rafter bases are reinforced and on the other hand the bending stiffness and the bending capacity of the rafters is increased. The proportion of the rafter roof load-bearing on the global load transfer increases, with the consequence, that existing principal frames are unloaded. Wood-based panels are particularly advantageous in the area of ridges and valleys: Due to the high shear stiffness of the plates, all roof edges are semi-rigidly fixed. The interlock between the wood-based panels and the deformed rafters can be achieved labor-savingly by fixation of the components with screws.

REFERENCES